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CHAPTER 1 

INTRODUCTION 

This cantract WOE concerned with the application of reccn+ly 

developed function-space Davidon-type techniques to the shuttle ament 

trajectory optimization problem, and with an investigation of the 

n c d y  d e v e l r . p e d  PRAXIS algorithm for parameter optbil l t ion.  

The PRAxfs algorithm has been programmed into the NASA-JSC 

PEACE parameter optimisation program, while the fPPctioa-spce 

r t g o r i k ~  are contained in a separate .ingle program. 

A, the outset of this analysis the major deficiency of +he fpnctiop- 

space rlgorithms was their potential s+orage problems. Since most 

?redous analyses of the mothods were with relatively low-dinrenmion 

problems, no storage problems were encountered. However, in 

shuttle trajectory optimhation, atorage is 8 problem and h i8  problem 

-8 handled dectively. Thi8 point will be discussed forther in Chapter 4. 

In Chapter 2 the function-apace ~lgoiitlxns art presented and 

d i ~ c ~ s e d .  The theory is prerented in ruch a way that both parameter 

and function controls are bondled ~ t u n t l p .  Aerospace problem8 

u s d y  contain both types of control.. 

Tn Chapter 3 the shuttle ascent model is presen*ed along with the 

development of the particular optimization equations. In Chapter 4 

the operation of the algorithm and typical sirnulatiom are preuented. 
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in Chapter 5 varia .le final-time problem considerations are 

etudied since some invescigators have found +he func+ioi. -space 

accelerated-gradient me+hods to behave poorly on variable final-time 

problems. Simulations and heuristic reasoning indicate +hat +he initial 

choice of 

8 choice tf 

r u e  considerably. 

(in *he ittrapion schcmt), say t (O), is critical, and that 

< tf (optimal t ) appears w improve the convergence 

f f 
(0 )  = 

f 

20 h Chapter 6 a modification of Powell' s algorithm , developel 

25 by BicEt 

PRAXIS, and it i s  a parameter opimization scheme which does no? 

requite gradient information. A flow diagram of +he algorithm is 

presented in Appendix D, and a listing, is available with +he NASi-.TSrJ 

PEACE program. 

recornmendations for further study. 

, is presented ind discussed. The algorithm is known I S  

Finally, Chapter 7 presexts the conclusions and 



CHAPTER 2 

THE ALGORITHMS 

h the past few years n u n e m  quasi-Newton type algorithms for 

the sohatian of parameter optimization problems have beer1 extended from 

Esclidean spaces to infinite d imeas id  rcrl Hilbert spces. Just 8 s  in 

Euclideaa space, the prinvry advantage in Hilbert space i s  tbe 8cceler8ted 

rate of convergenca due bo the b u i i  of .+cad order information while 

requir*nl]l only h c t i o n  and gradient evaluations. Except for the coajugate 

gxadient and gradient methods, existing function space methods c-ot 

handle directly control variable inequality constraints. Thus a@icrtiona 

to optimal control problems b v e  primarily dealt with the classical 3 o h  

problem. Since most realistic problems cor+ain control variable inequality 

conotraints it is desirable to be able to handle them directly in a compu?atiaa 

scheme. In attempting to solve such problems a new function space 

algorithm has been generated and two existing quasi-Newton type algorithms 

have been modi54 to allow them to ham&* directly the bounded control 

problem. The modification of the algorithms was stroslgly influenced by the 

work ~i Pagurtk and Woodside on extending the conjugate gradient method to 

tacrhrb. bounded controls. The methods modified include Davidon' and 

nrOyda3 type algorithms. 

1 

3 
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2.1 The Algorithms 

In this section the various algorithms will  be formally stated for 

the problem of minimizing a real functioml J(u), where u m a y  be either finite- 

or infinite-dimensional. With u finite-dimensional, the formdar are 

applica;le to the standard unconstrained parameter optimization problem. 

In the next section, '.he appropriate modifications for application to optimal 

cantrol problems with boov&d emtrol variable8 wi l l  be presented. 

In the listing below. each algorithm requires the specification of 

a starting vector, o . In addition, the madon and Broyden 
0 

algorithms require the specification of a positive-definite, self-adjoint 

linear operator, H . Also, -,Wand o><b wi l l  be used to denote the m e r  
0 

and outer (dyadic) products, respectively, on the given Hilbert space. 

Note that if the space is n-dimensional Euclidean space, then <a,b,= a b 

and a><b = a bT, where a, b are n-dimensional vectors. 

T 

The inner and 

outer products for the optimal control. problem wi l l  be defined is; the next 

section. 

Let g(u) denote the gradient of J, and define t!!e update formula by 

u = u i t  i+ 1 (2.1) 

where di 3 

by a one-dimensional search technique which minimizes J with respect to Q. 

search lirection vector and Q. f scalar parameter defined 
1 
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I. Gradient Algorithm (GI- 

a. Calculate the search direction di= -g(ui). 

b. Use Eq. (2.1) to calculate ui+l and return to step a.  
5 II. Conjugate Gradient .'itzorithm 1 ( C a )  

a. Calculate the search d i e o n *  

di= + Pi&-l 

b. Use Eq. (2.1) to calculate u and return to step a .  i+l 
2, 7 XU. Davidan Algorithm (DAV) 

a. Calculate the search direction 

b. Uac Q. (2.1) to calculate ui+l 

c. Ca1cul;atc 

si = Uitl -ui 

d. Update H according to the following formula: 

Hitl = Hi + - 
8 . X S  i i  HiYiXH Y i  

<a;, Y;> <Yi' HiYi> 

e. Return i o  step a. 

(2 .7 )  

* On the first iterate ( i = 0),  define d. = -g(ui). 1 



6 

3 SV. Broyden Algorithm [SRD) 

The same as DAV except for step d, where H is updated according 

, 



As acted ?fe~-ns ly ,  in n-dimensional space the alsoritbms are 

ssed 2 0  r-;kxrize a scalar valued fnnction J (u), where 11 i s  an n d i m e n s i d  

- T  vector. fie inner prdtict i s  < s, y> ;; s y, the dyadic qerator is 

8 Ft ys 
- 
i 

sy , and the H operator is an n x n matrix cf scalars. 

hbplementation of tk algorithms this type of problem is well documen'cri 

the litsralnre. All of the algork-s dtgcribed, with the exception of t'h- 

(BRD) algorithm, have als; '=en ge eralirred to optimal control problems 

where g is the gradient of a fanctional. The primary Wiculty iu irnpleriea:I~-- 

the q&si-Newtm type! algorithms on optimal coattol problems lies irr 

tcnrescnSnp the Idiiite-dimensionaZ H-operatcr. ~ 

In L, =-ace the inner product is < s, y> T f 
g[ s y dt and the 

- 899 tn 
dyadic operator is ( s x y )  u = <y, u', s . Hmrewr, there simply is 

no coi-erricnt way to represent €3. One way to ovetcorw this diffT..-.alty is 

prrvp+wl in Reference 4 by Lasdon, where it is dwx=rred that only H.p 

t r o t  H, itself) is needed to compute d.. This is also trw for the Broyden 

sfcs~i thr r . .  

1 1  

" 1 

To implement the Rrovden zdgori:?m, where g is the gradient 



( 2.9 ) r e e r e i  the computation of inner prodpctr of the 

-.;choice). 2% functions (so.. . . . art available from paat iteratiow. 
- 

TO ~OIlhpPtc the fimctiok6 ZZ p.. .~t need O ~ Y  replace -gi by vi i9 E+@. 9). 

i. e., H, operating on y- instead of -gi. Then, for the caie i-1: 

=ii 

1 1 

caa be competed in a way reyoiring only inner product@ and Thaa Hi-1 yi-1 

operation with Ho = I, a8 war the case for -H g.. Note that i l  

functions must be stored aiter the i iteration in order to compute the i t 1  iterate, 

i. e. 

+ 4 tune 

i + 1  functiope 

i functions 

( 8 0 , * * * ,  ai) 

(HoY,* * . D Hi,l Yi -1  1 

gi0 u. 3 functions itl* Y i - 1  
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We shall now define the basic optimal control problem, and then discuss 

the problems of implementing the quasi-Newton algorithma. The 

interpretation of the above formulas and operations is more motivating 

in an optimal co; irol setting. 

The optimal control problem OZ interest is a Balsa problem with 

control constraints as follows: 
tf 

Minimhe:.. J(u) = +(xf).t J L (t,x,u) dt 
t 
0 

- subject to: i = f(t, x, p), '(to) = xo (x  = a-vec x) (2.13) 

1 u - 1 ~ ~ ~  (i=1, . . .,m) 

to, tf specified 

(2.14) 

Terminal conditions are included in the +(xf) - term and statevariable 

inequzlity Constraints are included in the Lf t, x, -it) by the method of 

penalty functions. 

A motivating -my of viewing thequasi-hewton methods is as a 

class of algorithms between the first-order'' and second-order 10, ll, 12, 13 

optimal control gradient methods. The god of a quasi-Newton algorithm 

i8 to build informaiion about the seconds+riation operator without computing 
- 

it explicitly, i. e., based upon gradiekt information only. Siace only 

gradientr and function evaluations are required for the qna.oi-Newton 

methods, we shall first outline the gradient method for optimal control 

problems, and then discuss the modifications for a quasi-Newton method. 



In aU of the algorithms. the following cqaatiow are rtqaired: 

BH 
g(9) = F)p 

(2.16) 

(2.17) 

(2.18) 

Pbte trut the subscrip4s indicate the iterate d e r  for the respective 

vectors; this allows less cumberswne e t i n g  of the quasi-Newton formulas. 

T!te optimal control fr- the problem dcfirrcd by Eqs. (2.H-16)will. 

in pneral* consist of a sequence of intcrior ( IP- I < c.) :ab bounded 

( !ui 1 = e.) control component intervals, QI each rubarc the following 

1 1 

1 

crz2itioxs rnnrrt b- satisfied: 

(2.19) 

(2.20) 
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I 

l - D  search - .- 

u = U ~ + Q ~ ~  
1 

r 
Calculate dz = -gz(t) I 

I 
r----- 
I 
! 1-D search + o 2 

u 3 = u L + u  d 2 2  

Figure 1. Flow of the Standard Gr8di-t Method 



We sbJ1 oov discuss how bounded control variables are treated directly 

in tbe stuuhrd gradient mftbod since the same basic idea is employed in 

tbs qJui-- methodis. 

indicate the itersk number, and Eq. (2.7) implies the Ikpidao algorithm 

and Eqs. (2.9) .Ibd (2.10) imply tbe Bra- algorithm. 

Note that as tbe iteration proceeds, the aOmbcr of functio~~ stored 

increasee. The computation time per iterrtion rill also increase kcruse 

of more b r  pmduct evaluations in the updating formalas for Hp and d. 

TG overcane thi. difficulty the algorithm ir restarted with pura gradient 

rtep rbsn i = q, where q is sonrc prtdetermincd bterger- f i r s a t  and 

Rajt0ral4 demonstrated that the restart featarc sometimes speeds 

convergence in addition to being a practical necessity. For certain problems, 

they found that for q small, ray 3 or a, that the convergence rate was 

enhanced. 
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L 
c 

I n-1 
L-- ?dculate d = -g,(t) - 8 
I n J-0  

I 
[ Eq. 2.7 or 2.8 ] 

! 
L 1-D search 

-u = u  + a d n  
... -. .. ---. - _- 

I 
I n+l n n n  
I 

+- ---- Store s (t) = uMl(t) - u,Ct) = "pd, 
1 n 
1 
i 

Loo--. Total storage g,. un+, . . 8 .o 'n-1 D H y  . O  o 

Hn- lY*-1 8 

S 

n- 1 

n 

Figure 3. Flow of the Function Space Quari-Newton Algoritlunr for 
Ho = I and i = 2,. . . , n ,. . . 
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2.3 Bounded Controls 

To apply the quasi-Newton type algorithms to the bounded control 

problem a modification to the updating formula is required. In the interior 

portion of the coxztrol we wi8h to build second odes information while 

sccopd order information on the bounded portioa of the control is of little 

use. "has, the qrud-Newton formulas should concentrate wa the interior 

controb. and a ataadard gradiemt formula cam be maei on the b o d e d  

As with the gradient algorithm, am new caotrola u c  generated 

they are truacated before calcdating &e asuociated cost. A 

1 
sabpr8tion function ni[t) identical to Pagurek .pd Woodside's i8  defined. 

This saturation tonction i 8  set equal to =em wheri the control is on the 

boundary a d  is set equal to amity on the interior. The saturation function 

is then peed in the following way to compcruate for our lack of freedom 

in choosing the coldrol on the boundary, Instead of psins q, y, and Hy in 

the formulas for calculating the 8sarch direction a d  updating Hy, we use 

wg, vy, and wHy. We know that g = 0 on the interior partion of the 

optimal conk01 and this is wheut we wish to build second order information. 

c)m the region of saturation g 8 (in general) and the y's for  As's) Should 

not contribute to the inner products in the updsting formulas. I t  i s  not 

necessary to apply the saturation function ta s because on the saturation 

region, rc = An will already be t a ro .  
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The ?uasi -Ne- algorithm for bapnded cmntrol yroblema Mer6 

Xrcrm the algorithm for aa3ounded control problems in ttrc foihwing ways, 

i) As the I-D search seeks the best Q the aasociated control8 are t .rkwc' s .?c -  

-re the associated cost is calculated. 

ii) A saturation function w.(t) is generated after each ite?ation. 

iii) wg, wy, and WHY are used in the opdating formulas and in t)re 

1 

c.Tlcnlation of the search direction. 
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2.4 Fpnctioa and Parameter Controls 

Soant optrmirntion problems are most naturally formulated 

uming a d i o n  of contro!~ rll Rn and % spaces. The shuttle 

uct rs  problem developed in the following chapter is such a problem. 

While the approach for problems whose control space lies in either 

 or L pi. mre~dtvelcpwi, tbh thhory is incom*etewhen amttart 
2 

of cmtrols exists. For tht general Baha problem Eq. 2.U-14, the 

control is an. hi vector of fanctions, 

and the first variation after appropriate adjoint function definitions is, 
tf 

6 J =  f 0 H  U ' b n d t  (2.22) 

Tbe gradiant of J at the element z, denoted by i, is defined by the inner 

product reWion, 
*I, 

(2.24) 

This is the usual function rpace gradient. It can be shown that 

in L r  [ to, tf] the linear quadratic problem ( L t) P), 



T A 

mh J = [ xT P (t) x t u R (t) u] dt 
0 

2 t  

SUBJECT TO = G(t) x t B (t) u (2.26) 

X t given = (to, = =o 0, tos f 

in equivalent to the minimization of the uncrsstrahed quadratic funct;onal, 

(2.27) 1 
2 0 

J = -  <u, A u > t t u ,  w > + J  

where A, w, and J are appropriately defined and the inner product 

is defined by w. 2.24. It cau also be shown that A is a strongly 

positiveoperator if P (t) - > 0 and R (t) > O o n  [ to, tf] . 1.a. the quasi- 

0 

Newton methods can be applied directly to the quadratic functional 

given in Eq. 2.27 for which ctmvezgence can be shown. Therefore an 

iterative solution to the optimal control problem of Eq. 2 I 26 can be 

generated. 

In general, the noquadratic functional is of interest. However, 

if the general Bolsa problem can be approximated by a second-order 

expansion in the neighborhood of the minhising control reasonable 

convergence may occur *near the minimum. 

Accepting the desirability of the approach above, consider the 

class of optimal control problems whose control space is composed 

of elements in L: [ to, tf ] and Rn. 

- n 
= u  a L r x  R (2.28) 



The first variation becomes, 

Since c; constant, thtn 6 c dc and Eq.  2.27 becomes 

C - 3  = 5' H 6 udt+dcT lttf dt 
U 

0 
0 

t 

(2. . -. 

(2.39. 

Proceeding a6 in LF [ to.tJ an inner product must be defined ~ € 5 ~ 5  

will imply the gradient. Then to justify, iE a sepse, the application ci 

the quasi-Newton algorithms to this class of problemrr a suitable 

optimal control problem 6imilar f- the L 0 P must be developed which 

can be rehced to an eqoivalent ranconatrained quadratic Lonctional. 

The merit of the choesn inner product i s  mcaaured by its usefulness 

in implementing the qaasi-Newton methods. 

A mare ntrar@tfo~ward approach to this c€ass of problems is 

based on thc observation that bounded elements in R" can be choapht 

n 
of as canatant functions in L 

partiti cncd, 

[ t , t ] . Thus the control can be 2 o f  



where u. ( i - 1, . . . ,p) c Lz [ to.tf] 

are fiiite constant functions. Thus the ah ias ib le  control space is a 

and u. ( i = p +  1, . . , m) 
1 1 

8UbSpacS s of L; to, tf 1 , 

I u I u i ( i = l . .  ., p ) e  L ~ [  t , t  ] ; ( i = p t 1 , .  . . , m )  I -  (2.32) f i i t e  constabt functions 

o f  S =  

The goal is to fmd a S which minimires the quadratic 

functional of m. 2.27, The adwantage of this approach is that all the 

theory which has been developed for L r  [ to, tf ] still applies. The 

d y  change is that is restricted to lie in S. 

~ h t  set s is a linear satmpace of L~ t , t 3 . The asef iess  
2 o f  

of tht fact that s io a -ear 8:ibspace of L 1 to, tf 1 lies in t b  
2 

i’oiiowing property of Hilbert spaces and quaui-Newton algorithm s , 

Property : Let M be a linear subspace of a Hilbert space I). 

There exists a mapping P:D j Ad called a 

projection operator wbich is linear, selfadjoint, 

and indempotent. If H 

algorithm3 is chosen to 

u. mfor  all i ,  and 

c 

- 
1 

of the quasi-Newton 

be P and zo M , then 

= 0,  2 

r-- c 6 .  
. - -  
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If a projediori operator P = L2” k;, tfl-. S can be found, a 

consietant method for handlingcombinations of function and constant 

type controls wil l  result. - - Property: Let ii =[“ - - - -  (t) ] where A t Lzm [to, tf 1 

adAf[t)a L2 P [ f o D t f ]  

Ac (t) 

Lz 

Define P: LZm It,. tf]*S by 

Then, P is linear, 

----- 
At = t -t - ht ~ J rtf A C (t) dtl . f o  

* -  - 
i i )  Seli-Adjoint - Define P” by< A, P 5 %e P AD B> 



- - <PA, 

3 

P) 

1 
iii) Idempotent (P" = 

The properties developed above imply how the first variation of 

Ea.  (2. 30) should he treated in tlc quasi-Newton algorithms. First, 

t t the m tn 
! m 1' n 2 0' f' viewir?g (u (t) ,  u (t), c . . . , c ) as an element cf L 

(2 .34 )  
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L.- 

aad an admissible choice for H say H 
0 ,  0 ,  

is the projection operaktor (2.33), 

which implies that the initial search direction is 

However, nc &e that this is equi-ralent to assuming 

r R 

(2. ?5? 

- n- n 
with ( y ( t ) ,  . . . , u (t) ,  cl, . . . , c ) e L Ito, t 1s R , a n d H  - I  since 

m n 2 f 0 

1 

(2.37) 

Fnrtkeracro, the choice of definition for the gradient (2 3 6 )  has +hrt 



CHAPTER 3 

SPACE SHUTTLE ASCENT MODEL AND OPTMIZATION 

3.1 Vdticle and Missicm &scription 

The vehicle & missiar considend are taken from Reference 15. 

Tb. prt i s  to determine e c o a t 4  history for the pressure-fed series 

bum booskrfOM c orbiter which wi l l  yield maximum payload deliverable 

bo a 50 r 100 nm. orbit inclined 28.5 degrees. The trajectory is sonstraib d 

to 650 psgmaxhmmn dynamic pressure and 3.0 g maximum accleratioa. 

For mjectory parposes the mass of the vehicle be broken down 

- imhfivemrlrrsubdivisions. 

DISTRIBUTION 
- n R B r r E R  

6 
IP = b l  first stage = 3.50680 x 10 Ib m. f l  

6 m = fuel second stage = 1.16415 x 10 lhm. 
€ 2  

5 m = structure ffrst stage = 5,?0850 x 10 lbm. 

m = structure second stage = 2.61300 x 10 lbm. 

m 

The t-ajectory is determined by two controls, the mass flow rate 

S l  

s t  

P 

5 

= payload = quanity to be maximized 

which implies the mapitude of the thrust and a thrust angle. The mass 

flow rate m a y  vary from zero to :,e--- whic' 

0 r r l l O O % .  The overall trajectory can be b 

. r i & s  t between 

. I four "phases". 

24 
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COORDINATE SYSTEM SPHERICAL ROTATING 
APPENDIX A 

PHASE1 PHASE2 PHASE3 

VERTICAL PIT- GRAVITY 
RmZ OVER TURN 

Each of the phases is characterized by the way in which the thrust angle 

is determined and by the coordinate system in which the equations of 

motion are W i g  integrated. 

mum 

LINEAR 
TANCENT 

~ 

The equatioars of motion for the first stage are integrated in a 

spherical coordinate system which rotates with the earth. This 

coordinate system was chosen because of the ease of representing 

initial conditions and aeroctynarm -c forces. The general equations of 

mQtiQBL are derived in Appendix A. Assuming the first stage engines are 

perfectly expanded to vacuum pressure we have, 

where I = 270.7 sec. 
spl 

A =too&& exit 
4 0 c lm1< 3.01385 x 10 lbm/ sec. - - 

6 __ T-= 8.15849 x 10 lbf 

The first stage bum is further divided into three phases. They are, 

i) Phase 1 - vertical rise for ten seconds 

ii) Phase 2 - pitch over at a constant rate for ten seconds 

iii) Phase 3 - gravity turn i .  e . ,  the thrust is parallel to the velocity. 

This phase terminates when all file1 is  exhausted in the first stage. 
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Atrodyaaxnic hrces a n  on the order of 2% of the total forces 

&ding on tie vehicle after staging and drop of€ rapidly. Th-, aerodpama -C 

boras a n  neglected during the second stage burn. This lff0IR1 the 

quatiam of xnotion to be i n t e g d  in a polar c o o m t e  system. 

of coordinate systems results in a new set of state variables, The equatian8 

C. By integrating the eqmations in a polar coordinate systemweb= 

3 
0 < < 3.0887 x 10 lbm/sec. - - 

6 = 1.40999 x 10 Ibf. "j *- 
W i g  second stage burn the thrust is orientated according to 

the linear tangent steering law, i .e . ,  

tan y = at t b, (a, b constants) (3.1) 

where y is the angle bebeen thrust vector md the local horimntal. 

The above discussion leads to the following overall problem: 
b 

i)  Initial conditions - launch from KSC 

ii) Terminal conditions - 50 x 100 n m  orbit inclined 28.5 degrees 

with insertion at perigee. 

iii) Controls and Unknown Parameters 
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3.2 Thrust Foras 

I 
)- t 

! 

Figure 3.1 Coordinate System for First-Stage Computation 
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8 
I 
8 

t 

- - -  
ii! FSkh Over: Consider the %rial of vectors er. e@B e+. 

- - 
m e  plane defi-led 5ysr e9 and t i s  the 1cca.l hnrismn, 11 plane. 

9 - 
The a% vector t points in the easterly directicn for 9 # 0 or P. 

(? 

Axter  vertical rise, the viehide pitches over and at the same 

4ime the plane of the orbit is determined by thrusting at some 

vehicle 
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ir) Linear Tangent: tan y = a t + b 
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3.3 Aerod+amic ForcE 

It i8 ar6umed that the vehicle i8 aligned with the local wind 

VdOdwl thU8 

f l  - v -  w -  
=4 e +- e +- 1 7 2 2  

2 
- 
A=--  p A C D ( u  + P  + w )  - 

I +I = rtl e 13 

In all equations that follow the control notation will be, 

u - m a s s  now rate magnitude 

5- GLOW (Gross Liftoff Weight) 

c - pitch-over rate during pitch-cver phase 
2 



- a (linear -gent parameter) c3 

- b (linear tangent parameter) c4 

=5- apt-of-plant thrust angle during pitch over. 

3.4 Equatims of Motion 

. 
It = x  
1 3  

.t t 2 O X  sinx t-- ' x6 5 

x x  2 
e 3 4  + ( 3 + R o )  d S i n x  Cosx 

2 2 x =  4 

*z + 2 n x 5 C o s x  t- 
x6 (3.9) 

c 

' 3  - 2 x p s i n x  t- 
x4 
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6 = (mass) x 

(3.10) 
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e = dsp - PA 

iXL 

iii) Gravity Turn: F - 
1 

F3 = “lp + x  2 + x  2 
3 4 5 
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T a n r = C  t t C q  
3 

Equations of Motion 

(3.13) 

(3.14) 

3.5 The First Variation 

Xn order to apply optimization theory the problem must be stated 

in control notation or format. Then: are five parameter - type controls 

and one function- type control. Recal l  the Parameter Controls: 

i j  Cr - GLOW 

ii)C - 
2 

iii)Cg - a 

iv) C - b 4 

v) c5-+  

Function Control: u (mass flow rate magnitude). The equations of 

motion for the system have already been derived (Appendix A ) and 

m a y  be symbolized by 
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wheret, for convenience, u denotes the vector ( el, . . . , C 5 ,  u). The 

terminal boundary conditions will be handled by the method of quadiatic 

penalty functions. The state variable i n ~ ~ u a l i t y  constraints will be 

h d l e d  by integral quadiatic penalty functions. The performance index is, 

t 

to 
t 

t P5 J" (acc-3.05) 

t P6 

U (acc-3.05) dt 

facc-3.00) U (acc-3.00) dt 

$3 

tP? ( C o s # @  ) - C0S4bf) 2 
f 

Where # - inclination of orbit U ( q ) = 

q - dynamic pressure 

ace - axial accelcratim 

Pi - penalty weighting factors 

- defined by fuel exhaustion 1st stage 

- defined by fuel eshausri~n 2nd stage 

t* 

t 
f 

(3.15) 

1) Vertical rise 
2 )  Pitch over C, = 9 5  1 late. 0 

4 - 3) Gravity Turn 5 I I v 
4 )  Linear Tangent tan y = C t + C4 3 Figure 3. Phasing of Shuttle Ascent Trajectory Optimization. 
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(3.16) 

Subject to: L; = f ( t , x , u )  (t c t c t  ) 
0- s 

=a *;r=?(t,;;: u) (t c t - < tr) 
S 

f 

S I S  

I -  
- 

i to = ~ s e c  : 10 sec i 20 sec 1 t free 1 t - -  free 
I I r I I 
I I I 

1 

-x fixed, I free " 1 5  free ; x -x free f I 2 t  Fg (xji-))I l h r  3 - x  hr free 
s !  3 

I I 

- I  * 
1 I t 1 5  I S  

\ -  I 

I 9, (x, j = 0 
I \ 

1 
t I I s ( x s  1 =o ', 

,' 
x free 6 

I 

\ I I 

! . ~ i i 5 s  of Fuel 1 Trans- 
I 1st  stage I formation ; 2nd stage 

f Mass of fuel 

I depleted de- I I Equations : depleted defines 

' fires t ! App. C tr 
I S : I -- 

. -  
Define 

T H = L f \ f ( on each subarc) 

l'h- f iyst  variation is 

b J =  

T 20-  
f f [€IT& + h .T bu - \ "1 dt 

X U io+ 



I and substitilting :at0 Ea_. (327) 

T T . -. T i 9  
io! 6 x ( 0 )  -k (loj 6 x (10; f [(H X :- 1) ; H., Gu]'-dt 

0 

I 20 T +  
t X (10) 6x (1;) -XT(20, 6x(Z6)+ f [( H X + X)"6x + H U 6113 dt 

io 

T 
S 

tEH(t- )  -X ( t - )  k (t-I] dt 
S s S t 

S T T 
f k (2J) 6x (26) - A ( t - )  bx (t-) + [Hx + i ) T 6 x  f HUT 6111 &t 

20 
S S 

(3.18) 
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- .  ' i - _  .. 
S 

I 
I .  
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Then, since Q is arbitrary s 

< 3.21) 

t3.22) 

T tf e 20- t- 

20+ 
r k 2 6 u d t +  0 J lot H T 6 u d t + l S H U  6Pdt+_f  t+ H U 6adt + 

S 

P 

(3.23) 

After &fining the vrl-iops adjoint differential equations and boundary 

conditions by: 

- aH 
k = -c on (to, lo), (lo, 20). (20, ts) 

(3.24) 
U 

k (t -1 =%t;, + I t  - + # 

H (t-) = Hk(t+) 

+ Ai ( t i )  ( i = 1,. . . . , 5 )  S 
S S 

A6 (t;) 8 8 

Assuming expansion about a nonopticznal initial control estimate, the 

quantities bu and d m o  must be chosen to cause ti J < 0. The particula- 
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elmice is governed by the various algorithms of Chapter 2. 

3.6 Adioint Equations 

In this section the particular term8 necessary for the definition 

of the adjoint equations w i l l  be developed. First, cumider the partial 

derivatives of the force trpressions with respect to the state variables. 

A. CD= GD(M) * M = M (v x3,xq, xS) +SF7 - 
a (5) 



cambining the developments above: 

Ycrtical Rise: 

BcD 
ax, 'D-~ - 
B Q  aFl 

ax 
-= -- 

3 B S  3 

a -- Fi - 0  i =4 ,5 ,6  
a x. 

1 

= O  i = l ,  ..., 6 a - F2 

(3.28) 

( 3 . 2 9 )  

-- - 0  i =1, ...., 6 aF3 
ax; 



Pitch Over: 

BcD] x cos c ( t - Z  ) -[? ‘*+Q- 
BT 

Bi 2 -  
8F1 “.1=”.t 

2 - sinc (t-t )Sin cs CD+c!, x 4 3 2 vr 3 - 5  

(3.36) 

(3.  31) 



43 

-=-[- aF3 
4 C D + 2 J J ]  a% xs 

aF3 

8xs 
- = - Q C D  

Gravity Turn: 

-& =D t 0 5 ] x  x4 3 

to- 8=g x3 
ax5 

(3.32) 

( 3 . 3 3 )  



a BFZ IT1 "3f4 

(3- w =4 

- -  - 0  8F2 

'"6 

- -  
5 

aF3 - -  8T -[e C D + Q  9 'D] X 

X 

5 
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Linear Tangent 

ai? 
1 

i =1,2 j = l ,  ..., 4 -- - 0  
G 

J 

Second, consider the portions of the adjoint equations due to the 

performance index without the equations of motion adjoined (Le., due 

to the Lagrangian terms, L}. 

A. Vertical - Rise, Pitch - Over, and Gravity Turn 

L =[q - M @ 5 ) 1  AA (37) + [ACC - N4(26)12 AA ( 3 8 )  

where 

m 2 6 )  = 3.05 

[ACC-AA(26fl>O 

[ACC-AA(26&0 
(3.37) 

q . f  ( x j 2 + r 2 + x  4 5 2l 

BL = *-M(25] 8x M(37) + 2[ACC - AA(264 8*4cc &- AA(38) fer (i-1, 
1 

!h ax, =L 2 8p axi (x; + x 4 2+ $) 
0 

ax2 



1 - -  aACC - --a [YI - PA - q A C  .]= - ACC/x6 
SP e x6 x6 

a 

aL = - 2 [ ACC-AA (26) ] ACC AA(3R) / x6 

B. Linear Tangent 

% 

L = [ ACC-M(27)]  M( 39) 

A C C = [ O I  } /% 
SP - 

8L z = o  =1,2,3 
1 

= -2 [ ACC-U(27) ]  AN3?) A C C /  r+ 
Adjoint Equations for Vertical ? I . T . P ,  Pi+:I. -- C v c r ,  ?r?d Srat-i::. Tii - ;- 
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(3.41) 

zBL t k 3 [ 2 ( x , + R  1.d Sinx C o s x  + 2 R x  C o s x  J 
0 2 2 5 2 

+ k4 [ -(x5 2 CJC 2 ~ J ( q + R o ) t ( ~ + R o ) Q f C o s  2 x2- Sin 2 x)-2Sk5 Sin x.> J 
a - 

aF3 252 cos 9 t - 2 ax4 I x 6 1  ( 3 . 4 4 )  
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2 -k4 Ft/x6 

2 - k  F / x  
5 3 6  

Adjoint Eqmticms for Linear Tangent Phase 

(3.461 

3.7 Gradients 

The gradients with respect tathe control fuaction, u(t), and control 

parameters c i ,  . . . , c are develnped below. 

GO: Hu 0 2  [ ACC-M(26)]  I AA(38)/W- 

5 

S P  

OF1 (Vertical rise, +Xgr 1x6 
Pitch -0ve r , 

% Gravity Ti.? rn ) 
BF2 

+ h 4 K  



Thk c6xnponen's for these gradients are as f d 3 . 0 ~ ~ :  

(i) Vertical Rise: 

(ii) Pitch-Over: 

aF 

8a sp 2 vr d 

3, -- - I Sin c (t-E )Sin cE; 



(iv) Linear Tangent : 

50 

r N 
i - BF1 = sp 

(3.56) 

a -= IT1 [ cos c2 (t-tvp)] (t-t vr ) sin c5 
8FZ 

a c2 

k 

(3.57) 

t3.58) 

( 3 . 5 9 )  

( 3 . 4 0 )  



A 8F1 X4 8F2 kg B F 3  
f-- - -t.- -- H =-- 

5 

3 

‘5 x6 5 x a c  x6 ?-I 
ac =5: - 

BF3 J - =-IT1 Sinc  (t-t  )S inc5  
2 vr (3.61) 

T In order to calculate X (t  ) B ( j = 1,. . . , 5 )  and 4 (t  ) are required. 

Firer, consider the equations for B 

x s  
j 

E 3  

( j = 1 , .  . . 5 ) .  3 
j 
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Bjg = 0 

(3.64) 

X 
Finally, duc to 9 (t;), where 

+ ( t - )= fcos [ Q (t-I] - cos* ] 
2 

p7 S t- 
S s 

2 

2 P7 = rl P7 

( 3 . 6 5 )  

- cos Q 
t- 

S 

Then, 

D c f i n a ~ l = R  0 t x  1 ' .  Then 
- 

2 (x5 +- 3 QSin X2)Sin x 

q -  

2 
QSin x, ( )!jinx, 

x COS x + 2  I 9 Sin x, COS 5 2 1 r i  39- 
- r 

- c o s *  
t- 
S 

2 
X 

(3.66) 

2 
Sin x 

cos x2 



23- 
a- - 

2 



A large percentage of CPG time is consumed in & t-D SCP rch. F s  

: ~uraqi and efficiency--aTe a great effect on +he success r?f the 



iteration laop is re-entered. Tfiis process is repeat& until the 

will not yield a '%et&d8 control aad executim is terminated. The final 

control and associated tm-ieeo2-y are &en p l e d  by Calcomp Lor fature 

analyais . 
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Figure 4.1 nbgrrm 



4.2 Strgiag d F'in8l TimS 

The shuttle asctDlf trajectory -on problem is fornmlated 

insucbamyfhtt  u d t  thestagingandfinaltimesarcfree. The 

Cotofll conditian in both stager is determined by'propcllcnt exbustion. 

aecilltht 

6 f 

Thrmat=I n 
*P 

.rbareu(t). t?mm@tde ofthemass flow rate of propellent, is one 

of brs amtrob to be optimised, AU direct numerical methods require 

a first p e s 6  for Nt). This guest; is usually stDred pointrise at certain 

Lnorn times. -Eider the boost phase of the trajectory. Assume u(t) 

ia starad at n eq- spaced storage locations and is pieccarisc ?inear 

between storage loatims. 

a n 

P 

STORACiE LOCATION 
i i  :; 

I I TIME AXE 
- 0 :  t a t  4 I 8  

I I  6 0 

Figure 4.2 -1 Stomp 

pi (i = 1,n) and n are kaons values. 

The -6s of propellent m is known and must equal the area f 

under the u(t) curwe, 

m f =[F+u 2 t. . . + u  n-1 ++ 
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A At = 

Sine At is klurwn, ts cilll bt c~mpllfcd, 

t = (n-1) ht (assume t = 0) 
S 0 

The same procedure is used to calculate tf. 

Nor consider the interpol between storage fOcatiOP3 J and J + 1 

which corresponds to the time interml tJ to tJ + 1. 

J 
At = tJ + - t 

J J+l 

On this interval, a(t) = 2 s  T + b where T = t-tJ 

J b = u  J + 1- uJ 0 

At 
2r = 

- 
Since u = -m, the mass c a ~  be obtained as a function of T by integration, 

T - 
r n ( T ) = m J -  r ( 2 a s + b ) d s  

-0  

= A  T~ + B T + c 

Where, 

A = -a 

C = m  (mass et start of interval) 

Because of the assumed form for u (t) is is possible to calculate 

J 

tr At, md mass (t) analytically. This avoids the problem of guessing 
t.r 
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a t and At and integrating the *le system of equations while checking 

for fuel ubaustion. Ik also awids the need for extendmg o r  contracting 

f 

the control guess if the mass of propellent is not zero at the guessed tf. 

4.3 Storam Problems With -si-Newton Algorithms 

h Sectiom 2.2 it was shown thae  2 i t 4 time functions must be 

,th stored after the I 

direction. Each of these functions is stored as a n- vector of numbers 

which correspond to the function values at n equally spaced points on 

[to, tf ] . Thus ( 2 i + 4) n floating point numhers must be stortd after 

iterate in order to colppuft the i + 1 st search 

,th the I iterate. The compohtion per iterate also increases because 

of the increased number of inner product evaluations. Thus it is a practical 

necessity to restart the algorithms to a pure yrdient step every q iterate. 

E has been found that 3 < q < 8 is a good choice. The value of n must 

be larg, enough so that a'&oud'' representationof the hctions is 

obtained. For the shuttle optimisation problem the t h e  interval is 

appraximately 500 seconds and n was chosen to be 500. Thus storage 

must be allocated for ( 2q + 4) n = ( 2 x 8 + 4) SO0 = 10,000 double 

precision floating point numbers. Additional storage must be allocated 

for other variables used in the program and for the object pro-ram which 

is generated from a fortran source oeck of 3800 statements. 

th 

During the initialtesting of the program on the University of 

Michigan IBM 360/67 virtual memory computer all storage was done 

in fast memory. Howaver it was found that core storage w a s  exceeded 

when the program was first run on the JSC' s Univac 1108 . aputer. 
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To overcome this diftiidty the 10,000 double precision floating point 

numbers needed for the quasi-Newton algorithms were placed on drum 

storage. This reduced the amount of core storage required allowing 

fhc program to fit op the l l O 8 .  Upon running the modified program on 

the IBM computer a considerable savings was realied in reduced 

virtual mtmory charges, It was also found that no significant increase 

in the amount of CPU time was incurred, There are two reasons for this, 

i) a very d percent of CPtJ time is spent calculating the search 

direction, Most of the CPU time is spent integrating the equations of 

IDofiopI. Qn each iterate a forward integration and a backwar.d integration 

are required to determine the gradient and a number of cOgt evaluations 

JIlo requiring forarard integrations are performed by t h  1-D search. 

ii) the updating equation for H. y. and the equation for di are 
1 1  

mxmnatie..r which require inner products of the stored functions in _ -  
.. 

the &?+-$$pm.-. as they were generated and stored. Assume H. 

aad d. ;.r& to tu &kuWed. H y through HieZ y i-2 are shred in a file, 

~- 1-1 Yi-1 .- - 
1 0 0  

start of 
File 

\ 
itcad 
Write  
Pointer 

Figure 1.4 File Storage Diagram. 
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At the end of the last itezation the file has been rewound. The updating 

equations €or €3. y rdl read Hayo. H1y1,. . - , Hi,2 y i-2 in order, 1-1 i-1 

calculate Hi yi-l, then write H, y onto the file and rewind. Con- 

currently the equation fnr d. has been using the Hy functions. The files 

in which Hy and s are stored need only be rewound once on a given 

iteration and no forward o r  back spacing its required. Even if tape 

were to be used as the storage medium, instead of fast core storage, 

tht increase in computer time aiould be small. When drum storage is 

used the increase in computer time is insignificant. Thus there is no 

need to restart to a gradient step because of limited storage. 

- 1-1 i-1 

1 

As mentioned previously the computation time per iterzte increases due 

to the increasing number of inner product evaluations which must be 

made. The inner product is a quadrature. 

‘f T <n,v>= J u vdt 
t 
0 

wkemaandv are stored pointwise. If it is assumed that the stored functions 

are linear between storage locations the evaluation of the inner product 

reduces to a summation. Consider the interval 5 to t2’ 

1/ 
P t2 5 t2 

Let T = ‘-5 and ht = t2 -tl then on It t 
8 1’ 2 1  

u (T) = a T t b and v (T) = Q T + 
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a = - “ 2 - 3  
At  

a = v  -v 
2 1  

b = >  

The inner product of the functions between 5 and f2 is; 

3 at? t , b  2 
- = A t  - 3  + - At t b g  A t  

and the total inner product is 
n-1 

<us v> = <u,v> 
to’ tf i=O ti’ i + 1 

It was found that this method of evaluating inner products is considerably 

faster then higher order quadrature formulas and that convergence rates of 

th algorithms do not suffer. 
4,4 One Dimensional Search ( 1-8 Search) 

On each iteration a search direction d. is generated, and then a 
1 

new control is calculated, 

u =u .  tQ. d. it1 1 1 1 

The goal of the 1-D search is tofmd a scalar parameter a i  which yields 

the greatest cost decrease. At such a value it is necessary that 

J ( u. t Q di) = 0, a - 
aa 1 

which is an important element in the convergence proofs of the quasi- 

NewtonJgadtbmsfor the linear quad-dtic problem. 
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A large fraction of CPU time is spent within the 1-D search 

and its accuracy and efficiency greatly influence the convergence 

rate. For small a, da < 0 thus we ca-n expect a functional relationship 

with the following form, 

OJ - 

for a = 0 J = J(u.) 

J ( u 

1 

) will occur at it1 

Q = @ *  

Q 
a!* 

Figure 4.5 Cost vs Q 

As Q increases J will decrease until the higher order terms in 

the c r p s i o n  dominate and J begins to increase again. The I-Dsearch 

attempts to find Q *. Th$ performance index is evaluated at Q = 0 and 

Q = Q where Q is a guess for a . Q is then increased or decreased 

until the minimum is bracketed. that is three points are  foulld srreh t k t ,  

* 
1 1 

1 

k Q Q i i Q 



b4 
The function J(0 ) is approximated by a quadratic curve, 

J ( a ) = a a * + b c r  + c  

where a, b, and c are determined by fitting the quadratic curve through 

the three data points. The minimum of the quadratic curve is given by, 

aJ - = aaa + b  = 0 
Ba 

2a 
-b 

@ = -  

The performance index is evaluated at a and if. 

J (a') < J (tc.j 
J 

the control generated by Q is chosen a s  the local minimizing element. If 

. J ( a ' )  > J(a.) 
J 

a new quadratic curve fit is perfclrmed with a' , Q and, 
j 

a i f a t >  cy 
i j 

or 

This process is repeatei until a minimum is found. 

4.5 CRT Graphic Display 

The. rpace shuttle ascent trajectory optimization pnblem developed 

in Chapter 3 is a Dolza problem with the addition of state variable 

inequality constraints , 

acceleration 5 max ACC 



Dynamic Pressure  Q m a s  

and terminal boundary conditions, 

50 x 100 nm orbit 

Inclined 28.5' to equator 

Entered a t  perigee 

. -  
. :, _. where _. - . 

= 3.05 g ' s  boost phas.. 

= 3 .0  g' s orbiter phase 

ACCrnax 

max ACC 

= 650 psf. *ma, 

This optimization probleni is  repl.a;ed by an unconstrained optimization 

problem where the terminal tcundary conditions and state variable 

inequality constraints a e enforced by the method of penalty functidns. 

The i EW unconstrained optimization problem has sever? independent 

penalty coefficients, and +he performance index is 

3 = -W 2 
+- P1 [ ERROR IN FITL'AL RADIUS]. 

0 

2 
t P2 [ ERROR IN FINAL RADIAL VELOCITY ] 

t Pg [ ERROR FINAL TANGENTIAL VELOCITY] 
A 

0 

tf 2 t p6 J (acc(t:) -acc j L' (acc(t)  -act dt 
max max 

S 
t 

t P7 [ ERROR M FINAL INCLINATION] 



Here P, ( i = l ,2,3,?) are penalty cocffisients associated s-ith +he terminal 

boundary cdcioxas and Pi ( i = 4,s. 61 pre penalty coefficients associated 

with the state Paria'.% ineqcality ccnstraints. 

coefficients a particular unco~s:rained optimizatior- problem is defined. 

The solutiop to drt original constrained optimization problem is 

apprarirmted by a sequence a* solations to the nncaastrained problem 

gemsated by letting Pi ( i = 1, .. . -, 7)---.As P. i i = 1,2,3,?) are  increased 

tb soluthas generated wi l l  more closely satisfy the requirements of a 

50 x 100 n m  orbit inclined 28. So to the equator en-ered at perigee. 

Likedse as P. ( i = I, 5 .6 )  are inaeased the state variable inequality 

-Jastraints on dynamic pressuxr: and acceleration a re  more strictly 

enforced. 

tbe mPrimmn liftqff u-zight and satisfies dl seven of the constrakts. 

expected, in practice as one oenalty coefficient is increasec! the er ror  

assodated withit wi l l  decrease while the errors associated with the 

1 

For a given set of penalty 

a 

t 

The zltimate goal is  to find the control bistory which yields 

As 

other coefficients will  increase. Thus by improving the trajectory 

in one respect it is possible to lose something somewhere else. 

.%sitivity to *gab  &e differ& ~ l c  - 'ty coefficients also varies. As 

the penalty coefficients become larger the overall problem W l i l  become 

increasingly sensitive to changes in the control and numerical instability 

w 3 l  wentually. result. The way in which the penalty coefficimts are 



increased will  stronglyinfluence the overall convergence rate r r i  the 

algorithms. The main drawback to the method of penalty functions is 

&9mt the p r ~ l t y  coefficients must be increaaed in a problem dependent 

way, E ~ e n  for simple example problems which require little compnter 

tinre for a trajectory integratim and which have only one or tao penalty 

coefficients, the choice of these coefficients and the way in which they are 

increamd is crit'cal for rapid c r g e n c e -  Because of the compl-sity 

d relatively long computer time required for a trajectory integraeon 

of the shuttle ascent optimkatioa problem a better m e t h i  than trial 

and error is required for-b penalty coefficient d u e s .  

By using time sbaring car.putcrs and CRT display terminals the 

problem of b s i n g  penalty coefficient -lues cam be very efficiently 

solved by human operator interaction with the trecuting program. At 

tbt md of eac3 iteration execution is termbated and control transfered 

ofthe executing program is very inexpursive. At the request of tbe 

h- operator important information is then graphically displayed on 

tha CXT. The information is evaluated and a decision on changes of the 

penalty cafficicsts is ruched. This information is communica,ed to 

the computer and execution proceeds. By placing a human operator in 

the program iteration cycle convergence times are red- ced, the 

computer is wed more efficiently, and the operator quickly builds an 

intuitive feel for the physical problem being solved. 



For the shuttle ascent optimiratioa problem it is helpfd to 

graphically display dynamic pressure, acceleration, and u as functions 

of tune almg with terminal miss values. The best convergence rate 

was achieved by first increasing P. ( i = 1,2,3,7) yielding a trajectory 

rhich canet"ClOse': to the desired terminal boundary conditions, Then 
L 

Pi ( i 4, 5,6\ a n  increased rg enforce the state wariable inequal€ty 

shift rimdtanemsly increasing P. ( i = 1,2,3,7) so tbat all 
I 

intermdate - trajectories ~ m i n  %lose'' to the terminal boundary 

amditioas. 

The at0ility to interact with the execating program can be useful 

in otbhr way& The interrelationship of adjoint, state -ariable, search 

direction, and gra;tilcnt time histories can be conventdy-ed usmg 

&e CRT display. fu conclusion c h e  ability to communicate with the 

execu.ting program is a valuable tool for analpis  of optimization programs. 

4.6. Sakoutine Ikscription 

5 h # b  computer pragram consists of nineteen subroutines controlled by 

the main control program. Figure 4.6 presents a subroutine map which 

il!~U8';mteS the relatir,nship between subroutines. In this section the 

fur.ctba of each sub.routine will be explained. 

? M I  - reads input parameters, calls SPLINE to obtain curve fit r h f  

aerodynarnic cocfficie~its, controls forward, backward, and 

cost intel~rations, ca l ls  CAL to determine constant gradients, 

calls SEARCH which contains the 1-f, SCOrch, also contains 

logic fclr interaction with CRT display terminal. 
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. I 

SEAR- 

& 

TRUNC . 

I I 
INTEG ALGOX i CAL 

I 1 
1 i 

1 

c 

* 
CRT 

DISPLAY 

I 

I 
CRAFT MODEL 

1-- I 

* tkre are three FCT' s and three OUTP' s I = L2.3 

Figure 4.6 Subroutine Map 
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SPLINE - z &routine which intexphtes by piecewise cnbic splines 

-c coefficients such as C aerodpazm 

tabdar form as a hction of Mach number. 

which is given in D 

INTEG - contains the logic to determint the mass distkbution, staging 

time, h a 1  time, amd c a s  DRKGS for fonrard, backard, 

and cost integrations. 

ALQOR - contaims the warious atgorithms which require a gradient 

dt) as the input and produck at) the search direction as the 

CAL - performs the quadrature which calcdates the capstant gradientu. 

SEARCH - contains the 1-D sear&i.e? determines Q which minimizes 

TRDNC - performs the truncation of a- controls generated by varying 

rinSEARCH. 

ULMF 

LAMS 

POLAR - calculates the jump in state variable at ts and calculates the 

- calculates the value of the adjoint variables at tf. 

- calculates the jump in adjoint variables at ts. 

inclination of the orbit. 

DRKGS - a doable precision fourth order va*ble step sise Ibrnge-Kutta 

integration subroutine contained in the IBM 5SP package. 

FCT - computes the right hand side of the system of equations to 

be integrated. 

OUTP - an output subroutine used by DRKGS 

CRAFT - calls spline to determine C and - ''D - 
d m  
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ATMOS - calls MODEL to determine density (@),pressure (p), and 

6ped of sound (a); also calculates 

where h is the altitude. 

MODEL - contains thc stmospheric model; see Appendix B. 

4.7 Nmprrical Results 

The hadl control history and associated trajectory which will 

be presented in this sectiar are the result of computer mans made at 

bath JSC and at the University of Michigan. The initial control guess 

w- 

5 = payload mass = 80,000 Ibm. 

=9 = O.6892a0/~e~. 
=2 

= a = 4.43l4lO x =3 

- b  = 0.365070 
c4 

ll (t) = 9iy 

Tbi s resulted in a trajectory with the following terminal miss 

values, 

b R = -180,000 ft. 

A u =-zoo fps .  

b V = 602.1 fps. 

Inclination = 26.23O 
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The staging time was ll8.73 scc. with a final time of 503 .3  sec. 

The state Mriable inequality constraints were also violated. Q reached 

a peak value of 819 psf at 65.2 sec. while the maximum acceleration 

during first stage was 3.8 g' s and during second stage was 3.9 g' s. 

With the above initial control the program was run on JSC' s 

computer for 12.75 minutes. The resulting f i i  cantrol became the 

initial control for subsequent runs made on the University of Michigan 
- 

carnpte- AB additional 45.7 minutes of computer time were expePded 

9i1 tbr University df Michigan computer for a total run time of 58.4 

p2 

p3 

p4 

p6 

p7 

INITIAL 

IO6 

lo9 

lo9 

lo9 

The f d  control is; 

(*  =101,300 lbm 

C2 = 0.631857 Olcrec. 

'1 

FmAL 

1oI6 

lou 



= -. 47854 x 

C4 = 0.366590 

0 
C5 = -8.5 

P (t) - Figure 4. '1 

Om tlm converged trajectory, the staging time i s  121.1 w x .  and the 

final time is 504.0 sec. Figure 4.8 showa the angle y above the local 

barhontal at ahich the t h s t  is orientated. Figures 4.9and 4.10 indiu.te 

that the state variabb inequality constraints are being enforced. Fiyrt 

4.U showm the time history of altitude vs time. The terminal miss 

d u e s  are, 

A R = -4,700 ft. 

A u = 1.2 

A V = 5 . 2 f p s  .- 
Jnclinatinn = 28.8 

Theue ualues could be improved by decreasing the integration 

0 

O b p S ' h .  
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CHAPTER 5 

When a function space gradient-tj-pe technique i p  +niplove..!. cwe 

must continually confront the problems as snciaked with term i i l i i ?  I . , I l l  ~tr , - .  i ;lLC 

- -  

results for tXs  particdar prablem indicate that the multiplier InetFod 

and cow-plesity . 
- - -  

.- - 

Tb.e incjar result of tEis  chapter is'concerned -xith a ai-n-?le procebure 

whickA-apyarenilk .&r.~io.cc.-s considerably the rate ,If ~0::7.7&rge~~c- 

gra~ient-ty~-e-methcds ; - - r - b e n  penaltjr functions arc eniploycr! ~JJI --.-:-:able 

final &ne problems. 

. .  .- 
- .  

. .  

The result is simply tha! @.e-initial estim ;re-of 
~ .. 
-L 
3- ~ 

~ .- 

_. 

Sa? t lo', should-be less than the optinJil t - value,. say F+ . 
t€* -f f 

it appears tl--t  a physic;lJly urfres ronahle choice-of 
. . ~. ~~ 

.In . fact, 

which guarantees t 

trajectory with tfo) > t -  f' 

t h i s  property ha.s yet to be pxoved-mathe-.r.~tic~lly, . .  It ap;'.:' r - ' :. L e  

heuristically justifiable, 2nd all c i Gur -umerlc-al s Imulatiar - conf i rm 

. -  

(-0 ! . ::: 
< t, . is sup&ior to a-physicalty reasma& ini'iaf f 
-I. 

with respect to -rate o€ conve igr~c . .  . -Aichough 
.. 

the trend. Finally, -it will  be snow1 that a . r c c o n ~ ~ y  pray ) s e d  nlethod S'OF 

16 ~ treli.ting variabia final time problems by Tripathi and Narencti.. is 

^ c )  - -  
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ccsentiallp t F -  well-known method developed by Long in 1965. 

5,; Variable Fiaal Time ProF zms 

Consi4er the performaace index for a time-optimz? control problem 

is not specified. 
la 

a.rc multiplier constants ior tht multiplier method ; 2. = 0 if 
'i 1 

*be piaalty function method is Isad. 

in the time-optima! c-mtrd problem the algorithms rquire .an 

Om fubare iterate?, a procedure for t 03 
f -  initial esthate of tf say t 

updating t must be specified, and this w i l l  affect the rate of convergence. 

The fdhwing tam been proposed in the literature. 

f 

1. If ir rerfaced, t).e perbnent fonctioas are well-dafmed for all t. 
t 

~f t increases, thc control ir set equal ta the value at tfti! warhicb f 
is t of the previous iterate, in the extended interval [ tf (i) tf ( iW] . 

f 

The program used in this chapter is based on thic technique 

and it worked satisfactorily, at least for relatively 

simple p r o p  %ns. 

2. Xf t increzjes, the various functions are suitably extrapolated f 

ov?r the new r a z e .  

3. The functions maintain 2 same form, only the time scale is 



modified w tzke care of the changes in the interval [ t * tJ. 

Tripathi and Narendra l6 found this rneaod to be satisfactory 

G 

in practice. 

4. Con-rt the problem to a fixed final time problem -4th the 

transformation below. ( An additional parameter appears due 

17 
to this transbomtion, and the method was proposed by R. Long ). 

A. Define t = a  s 

where x = f (IC, U, t): the equations cd motion 

a =constant to be determined 

s = a new indeptndznt variable. 0 < s c i - -  
B, Let: s = O b e  the initial point. 

s = 1 be the final point -tf = a. 

C, New equations of motion 

1 

a = O  

Note: Since "a" is an unknown constant parameter, 

an initial estimate of ':a'* is needed and an 

updating scheme must be defintC. 

It wi l l  be shown that the r - r h d  proprsed by Tripathi and Narendra 

is essentially the same as t b  method b) Long. The justifkction is as 

h u O W 8 :  

i 
=a t:i), then following Ref. 16, a function, say k {t), If t:i + l) 

shc *Ad be updated by 



This - M C . t h o d  causes tke function k (t) to be compressed or 

expanded a3 t ( f 
dc -.feasts or inc -iases, reapecti-rtly . 

Tke method can bc defrned alternatively by introduchg the independent 

t u h b l r ,  T = a t. Then, the f=mction for the next iteration is 

k(i+l)(t) = (tlu). (t = 0 )  (5.4) 
0 

i 2 k (t) = t  + t  v t e  p , tf], 
bm, the function for the ( i  +1)  -iterate willbe 

9 

k i + L  i 6 t 
( t ) = k  ( t / a ) = p -  +- a vt e [ 0 , a td . 

Thsrs, Tripathi ;ad Narendra' 8 n.cthod can be represented by the 

i + l=  o t holds. f M o n n a t i a m  T = art, if the relation tr 

In the application of Long's methd, the value of the constant "a'' 

? m u  to be guessed initially to start the scheme. Assume that at the t i  + 1) 

iteratioa. 

i 
= Q  a i t 1  a 

This implies 

,it1 i + l S  = a  

t = a  8 ,  
i i 

Substituticm of (5. &to (5.61, and use of (5.7) implies 
i 

i 
i t  i 

- - P  t ,  s = a a  s = u a  -- i i t 1  i t 1  t = a  
a 

(5.5) 

i + l  i 
t = e t  



which t the trursforxmtiua equation used by Tripathi and Narendra. 

Thus, method (3) and method (4) have simi:ar basic characteristics. 

b~ the naxt section method (1) abowe is employed, and numerical 

csampleb r n  pttSen&d to show eat tF)< tf' gives a m o n  rapid rate 

f '  of coorsrgence tban tf 

- 5.2 Numeriui m p l e s  for Miaimum Final Time Problems 

Example 1. Zennelo's problem 

i = v COS e 

&re v = conatant, 

X ( O )  = X  = 0 ,  p (0)  =yo = 0 ,  e (0 )  = eo = o 
0 

la I - < k, k maximum turning rate 

Determine the minimum '5me to reach &e speafied final states: 

A. I (t,) =free, y (tf) = free, e (tf) = ef 

1 

(5 .?j  

For these simple problems, analytical solutions can be obtained 

rithout difficulty. 

Case A It is easily shown tbat given v = 1, k = - 5 0  and ef = 2r,  the 

control w i l l  be e i t h e x  u =+ k or u = -k for the vehicle *? reae5 tSe 

specified herding in mi5murn time. 

The cast functional is 



84 

2 2 2 2 
J = c tf t p1 ( x - xf) t pZ ( Y-Q) t p3 (+ef) 

t c 1 ( x - x ~  + c2 (y-72 + c3 ( e - e a  (5.U) 

where P1 = P2 = 0 and C1 = Cz = C3 = 0 for the puraity function method. 

The optimal trajectory is a circle centered at (0.2) with radius tno for 

et = 29 = .5  t 
* *  

t = 12.56 secondg, and f’ f 

Initial Conditions Terminal Conditions 

x = o  
0 

Yo = 0 

e = o  
0 

x =free 

yf = free 

Of = 2t = 6.20 

f 

The prpose of this problem is to show how the conjugate gradient 

method is affected by the initial f d  time estimate, t (‘1 k t  c =i, f 
Cg = 0, P, = 100, and the integratior stepsize = A t  = 0.2 seconds. 

* 
(O’ =2 seconds << k f .  me algorithm increases Consider t 

f 4 

thh final time to 12.65 secands with a(2) = +. 5 in twoiterations, 

(see Figure 5.1. a) 
* 

Consider t (‘’ = 19 seconds >> t After six iterations, tf (6)= 12.084 f f’ 

seccmds nith u = +. 5. (See Fig. 5.1.b. ) After two iterations, tF!= 18.96. 
* 

Thus, both cases converge iapidly, with the = 2 tf case 

having the fastest rate of convergence. 

Case R T3e exact solution for this case is as follows: To reach the 

specified poaition’in rr-i;rimum time, the vehicle wiil first turn at the 

maximwn rate, and tben switch to the singular arcu = 0 for straight 

line flight to the desired position, i. e. , 

(5.13) 
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-00- iaicial control estimate, 

-- - optimal solution 

- 4  \ 

\ 
control at 2nd iteration 

- 3 1  

\ 
\ 
\ 

- 1 4  \ 

8 
1 

O 2 4  10 12 14 16 20 22 

U 

- 5  

.4  

- 3  

- 2  

. I  

0 

control at eiwitcraticm 

2 4 6 8 10 12 14 16 18 2022 

* 
(b) t:” >> tf 

Figure 5.1 Control Profiles for Example 1. Case A. 
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The ~mrraspondii~g cost functional i s  (5.12) brat with C = 1. 

pl = p :: i aw,  c1 = c2 - p3 = L‘ 
2 3 

hitial  .onditions Terminal Conditians 

= fi (penalty function method) 

x = 4 miles 

= c I  yf = 3 miles 

= (1 8 =free 

f x = n  
n 

y,? 

@ r ,  f 
The optimal final time i s  t* = 5.093 secones. Four cages a r e  

f 

coilsidered in this example. 

(i) tio’= 2 seconds << t* . The f ina l  times goes to t 0 1 = 4.9s 
f f 

seconds on the first iteration, and to too) = 5.042 seconds 
f 

in ten iterations. The position e r ro r  after ten iterations is 

within Gnt  percent [see Figs. 5.2.a and 5.3). 

(ii) t:*’ = 4 secon8s. m i s  guess is  cir.:-.* to the true minimum. 

The program performs smoothl;=r and the terminal position 

error is less than m e  percent (see Fig. 5.2. c!. 

(iii)tiol = 6 seconds ( slightl; L r g e r  t a a  the true minimum). 

w’ = 5.78 seconds, after Little improvement in final time, t 
f 

twtlve iteraF.ons. The position error is about 2.5 percent, 

and the program terminated due to insignWacant cost change. 

Another interesting aspect of this case is that the control 

profile converges :o a profile far f r q t h e  optbum.  

;=plies t ta t  an initial guess wi;h t > t* may have the tendeficy 

* c -  converge (apparently) to nunoptimal solutions (see FiCs. 5.2.d 

This 

f f 

. ;. 3 ) .  

( ! . I  * 

tc.i i s  less than .2 .percent. However t 

= 10 seconds >> tf . After eight iterrtions, the position 

= 9.87 and again (8 1 
f 



P i  

-e-- initial control estimate 

.--,. opimal control 

-- control of last &ration 

- 5  

t - . t  

.e- 

(a) t;''=-~ sic,  t = 5-10 sec.,t "'= 5.048 SCC. 

( 0 )  I f f -- 

.. . {c) tf = 4 sec., tf = 5.10 scc. - _  

t (20) = 5.062 sec. 'f 

U 

. .  

t t 

( 0 )  * 
fb) f f  = 10 sec., + = 5.10 sec. -f 

tf(*) = 9.069 ser: 

rigarc 5 . 2  Comrol Profiles for Example 1. Case B 
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the control profile moves in the wrong direction ( s e e  Figs. 5 . 2 . h  and 5.3). 

Example ?.Flight in a Horizontal Plane 

The equations of motion for z coordinated tnrn in a horizontal 

plane, -with the thriis+ always ali.gned with the v e l i ~ k y ,  are 

&Y 

a t  
- = vcos p 

d V  -JT-D)  - -  
dt m 

vs = L sincr 
dt m (5.14) 

To maintain the a i rc raf t  in the horizontal plane, a n  algebraic cocstraint 

is imposed 

L cos cr = mg, (5.15) 

and the parabalic drag golar is assxmed, i. e.,  
L. 
L CD - --  CDo t K CL , (5.16) 

where C and K are independent of the Mach number and the Reynolds DO 

number and 

v2. D = z p  SCD 1 (5.17) 

Two of the three functions T, p ,  cr may be identified as controls with 

tne ;hird determined by the coiis;r.’int (5 15). In t3is example thrust  

magnitude and tank angle are controls which are all bounded, i .  e., 



<I; I' 
min-  - mas 

T 
(5.18) 

u (tImin = -cF i t )  for a symmetrical  a i rcraf t .  mas 

The cost functional to he Inmimized i s  

J = C r  f P (x - xf) t P2 (y -y f )  + P, (V-Vf) + P4 ( 6 - p f )  t P,im-.m 2 2 2 2 2 2 
f 1 4 - f 

+ c1 (x-x f ) i- c 2 (y-y f ) + c 3 (%Vf) f c4 (P -Q t) c5 (m-m,). 

(5- 19) 

A relatively simple case is selected to show hc;w the initial final 

time estimate will affect the performance. 

Initial Conditions Terminal  Conditions 

xr = 6 miles 

y =free f 

% V = free V =  2.2 34ach-2136.2 ft/sec 

!j = 

W = 861 lbs  

f 
#3 = f r e e  

W = 4341bs 
f 0 

3 4  
6 Again the penal6 function method is used, and P = 1 O O , P z  = P = P = P5 = 0,  

C. = 0 ,  i =1, ..., 5 ,  

1 

C =l .  
1 

r i  
Y 

Tne optimal solution for this case is t = 5 . 7 5  seconds. The thrust  
f 

profile is the boost-coz.st type and the bank angle is zero for  all time. 

Three final t ime estimates a r e  considered. {Figure 5 )  

1. t = 4 seconds, progran. forces the finaltirne to the nr ,borhood ( 0 )  
f 

of t::: in three iterations and obtains t = 5 . 7 9  on the fourteenth 

iteration, with +he boundary conditbn e r r o r  l e s s  than 0 . 2  psrcen'. 

f f 

(see Fig. 5.4. a). 



(0) 2. t .  - 6 sccoads. This i:. ;rc;iii i!i esLimate close to c:pttiI\<il,  

hut sliehtly loneer than the tree minimum. The control profile 

3 5 . ? 4  approached the boost-coast type end ended rip with t 

in foI.?rteen iterations. (see Fie. 5. d .  b) .  

(') = 10 seconds. After twenty- three i terations the terminal  

(1-1) 
f 

3. 
Lf 

position error was less thaq .1 percent (x = 6.00003:,  but there  

was insignificant improvement in flight time, t = 9.85. 

thirtieth iter&+iop, t s tar ted to improve to 8.76 which is still 

far from the true minimum time. 

tends to  the coast-boost type -.vhich is far froxii the optimal 

solution [see Fig. 5.4. c). Heuristic reasons for the behavior 

f 

At the 
f 

f 

The thrust  control profile 

in tbe  esaniples above are given in Section 5.3. 

5.3 Method of L4ultipliers 

A brief comparison of the penalty function method and the modified 

multiplier methcd (hi hf - 2), Ref. 19,was unciertaken in the study. 

upon the theory by Hestenes , M M - 2 should _, :L-form bet ter  than the 

Rased 

18 

penalty function method. OUT experience has  been th;t,with the conjugate- 

gradient algorithm, some improvement does occur.  

improvcrwnt is not significant enough tr justify the additional programming. 

5 . 4  Czcrlusions 

However, the 

-- 
The examples in Section 5.2 demonstA*att numerically :hat the 

!*) 
&.': appea r s  to imprcwe considerably the performance of 

f 'f ,hoice t 

grad ien t  -type rne:hccls when penalty functions &re el np10:recl. Although 
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---- initinl < i i e s s ~ c f  control 

- - o p t i m d  c:tmfrc.)l 

- control on last iteration 

t 

t 
1 2 3 4 5 6 ' 7 8 9 1 0  

(14)- 4. -8. (0) (b) tf = 6 s e c . ,  + = 5.75 tf - 5.916 sec f 

U 
.-.- 

i 

I 
I 
I 
I 
I 
I 

1 2 3  4 5 6  7 8 9 1 0  t 
.I. *. 

( 0 )  ( 3 0 L  G.77  s e c  
f (c !  t = 10 s e c . ,  + = 5 . 7 5 ,  6 

'Tigure 5 .  4 Yontrol profiles far Example 2. 

f i 



possible for the hitial trajektory to mket. thr?%su?idar 

tf' .n.;st ha greater thur i-; to decrease the e r ro rbn  rt'; teririinal -. 

constraicts. -Tki-s, &e optiviai solution %c: the aniquy characteristic 

of being the closest trajectory to the initial iterate, with r e s p e c t  to 

final time, which satisfies ttie terminal constraints. 

if t") > t f  , then it is probable that t h e m  exist i~dinitttly rimy nea.-by 

solutions wkich satisfy rhe !:erml?al constraints. 

funcfmis termifid constraint sarisfkLtion i z  a n-,ajor part cE the per- 

.. <dit+n-s-, aid.-  

- -  I O )  
I -  . -  

- _  - .  , -. 
-- . _ .  

On t i e  other hand, 

f 

Sin. 't with penzlty 

formance index, they? exists  the Ceniency to :'l_otk--ir GI-I the tszlnin&l 
.e. .. 

coLditions at t > t That is, the optimal s31ntio;i-rL., longer poS;)esses 

the amique poperty of being 

f '  

e clmsesi- t raeci-oxy *th;,-h satisfies the 

boundary co3ditians. 

st?.tcments above irliply tk2-t the mini m is 'flatter" i f  t, > tf than 

With regard to mather.;tical implications, the 
L. 

( 0) I:: 

rt:) * 
- f' i f  t, < t 



CHAPTER 6 

THE PRAXISALCORITHM 

En the previoua chapters fuaction space algorithms for minimiir- 

- thn have been studied. In tLis chapter we shall consider a recently 

&-reloped parameter optimization scheme which does not require the 

objective hction tc be differenthble. Such a scheme is of use in 

problems where it is difficult or even imposuiblc to fiid the partial 

deriva*ivms of +&+ objective function directly. 

? 2 Shall L - st discuss powcll' s method 
20 

and the modificaticmm 

due to ,'letcher and Brent . Some specifi.- properties which are 

&8dy related to convergence are presented along with an application 

of the method to a time-optimal control problem. Also, the subroutine 

of Appendix D has been built into the NASA-JSC PEACE paramete- 

optimitation program. 

6.1 Powell' s Algorithm 

23 25 

Tke basic concept of Powell's Algorithm is to minimize a scalar 

fonction of n variables, say f (x , . . . , x ), by searching along n 

directions which span the space. Thus, for one iteration, the basic 

procedure is as foilows: 

J 

1 n 

th 
Let x be the estimate of +he vector x on the J iterrtc, and g, - e ,  

u be vectors which span the space ( initially [ u..] is the nxn idcatity 

matrix). Then: 

n 'I 

94 
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2. For i = 1, . . . , n-1, replace u. by u, 
1 1 + 1' 

3. Rephcea 'oyx a J, n- =J0 

i x  t b u  J t l  J n' 4. b tominimirt f ( xJ t sun), define x 

rctprn zo (1). 

A simple graphid rrnmplc wil l  clarify +he iteration procedure. 

Canrider an ellipse in two-dimemrioorl space (see Fig. 6.1). The 

8lgorithn -6 at ( x , y ), .bd aa the first iterati-, +he maarch 
0 0  

directions \ , pz are 0.0)  and (O,l) ,  vhich are along the x and 7 direction.. 

J 

Fig. 6.1 Operation of Powell' II Method. 



Following Step 1, 

direction, and B is the 

the algorithm searches 

the algorithm searches along the 

resultant Vint along the tj") - axis. Then, 

along the u direction from the point (x t 4  ( 0 )  
2 0 15 *'o)* 

and C is the resultant point. Steps 2 and 3 require the nem search 

on the second iterate. 

(1) Oa the second iterate, the new direction D D* is conjugate to u 2 
20 

according to 8 theorem developed by Powell . The minimum is obtained 

by perfomkg an additio&d st8rch along this direction. 

This uunplc dunonstrates that the algorithm converges in a 

ftpib nmber of iterates for quadratic functions. A s  one might expect, 

the property of conjugacy plays an important role in this connection, 

and more details wil l  be presented in the next section. 

3.2 
. This breic proced.sre has the def tc t ,u  pointed out by Z a @ U  

that 8 poor guess of the initial potition (e. g., point B in Fig. 6.1) might 

lead the algorithm to fail to find the minimum. Instead, the algorithm 

w i l l  converge to a minimum along the line u (", which defines a proper 

subspace of the space R . 
2 

2 

22 In order to overcome this dificulty, both Powell" and Zangwill  

proposed met'aods to retain the linear independence. Numerical 

uperimente in Ref. 25 ahow that Powell's modification is preferable 



6.2 The Roles of Copjugacy, Orthogonality and Independence 

with respec, co k h e  poai@ive definite symmetric matrkrt A if 

A R& of roojrOgate directiars is a set inwhich the vectors arc paidsa  

2 
Coasidcr a qtudr;rtic function f (x, y) = I + 4y2, wi?h cllipiical 

caixmrs as shown in Figure 6.2. Writing the function in matrir form, 

d the two unit vectors along +he x axid y 8xes 

It is obvious that 3 and u are conjugate. 

With Powell’s method one can obtain the minbum by searching 

2 

along each of the conjugate directions once as long as the space on which 

the h c t i o s  is def‘med is spanned by the conjugate vcctorr. From Figure 

6.2, one can easily see that the minimum is Obfrriaad by searching along 

the x-  and y- directions only once regaflsess of the initial guessed position. 

0 
Now consider the rams function in a coordinate rystun rotated 45 

from the original system: 



f 

I 

Figure 6.2 Case when initial search directions are 
p*d@ -8. 

Figure 6.3.  Convergence characteristics for noncajugate and 
and conjugate rearch directions. 
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From Figure 6.3, successive searches along the I and y axes 

w i l l  not reach *he minimum due Po the fact that the x and y ares  are 

no lager conjugate. On the other hand, the minimam can always be 

reached by rtaccesrive rearches along two conjuga+e directiom. For 

L - I  

These vectors are conjugate since 

and, a s  can be seen in Figure 6.3, the minimum is reached by 

successive searches along 5 = [ 1 ,  0 1 and u =Is, 11 . 3 

2 

Since the principal axes of quadratic function a re  orthogonal 

and also A-coEjugate, one can always find the minimum by searching 

dong the principal axw once only. The algorithm modifkation by 

Brent is essentially based on this concept, i. e., it is to find the 

principal axes of the function f ( or its quadratic approximation) and 

to search along the principal arts to obtain the minimum. 

6 . 3  PRAXIS - A Modification of Powell' s Method 

Because of the deficieaci ea of Powell' s method, e. g. , 

the 106s of linear independcace ana conjugacy, Brent 25 developed a 

modified version called PRAXIS. The main modifications are: 
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1) A restart device is included to reset the search directions +o 

8 set of orthogonal, A-conjugate vectors after every XI or nt 1 iterations 

to insure the linear independence of the new search directions. 

conjugate vector8 are computed on the assumption that f is quadratic 

or is the quadratic approximation of the function to be minimized. If 

f is quadratic or if the quadratic approximation is good, then khe new 

search directions are conjugate with respect to i? matrix which is close 

to the Hessian matrix of fat +he minimum. 

will prevent the scheme from searching for a minimum in a srbspacc. 

2)  A random step is inserted to enable t h e  scheme to search for 

These 

This resetting method 

ancther initial point in each iteration if the most recent linear search 

hae failed to improve the current approximati In to the minimum. With 

this step in the scheme, +he trouble noted by Zanpwill will be avcidcd. 

For eraniple, in Figure 6.1 if  point B is chosen as thz initial 

point, then Powell's basic procedure will find C as the minimum and 

stop, as noted by Zangwill. Powell' s modified procedure will retain 

the old search vectors as the new search direction for the next iteration; 

hence one more iteration is needed to reach the minimum. 

With the random step, the algorithm wi l l  replace point B by an 

arbitrary point in the space, S R - ~  A' in Figure 6.1, after having failed 

to o t  i in an improvement in the direction of p = (1,O). This rules out 

the possibility of linearly dependent search directions. 

3) Discarding criterion. Powell' s modification proposed that 

the search direction should be diecarded and replaced by one which 

maximizes del (V'.. . . . V, ) 1, where 



-1 T - 
Vi = (  U i  A ui) 2 ui, 1 <  i I n - -  

Ml 

( 6 . 7 )  

A: nxn matrix related to the quadratic approximation 

This discarding method may lead to the elimination of one of the mutually 

conjugate directions, in which case finite convergence for a quadratic 

function can no longer be assured. 

In PRAXIS the criterion described below is employed. It is 

essentially Powell’ s criterion except an additional restriction is imposed 

to inaure the bite convergence for a quidratic function property. 

The discarding criterion fcr PWIS is as follows: 

At K th iteration with search direcfion 5,. . . , u and I det (VI, Vnlo n 

(a) For i = I , .  . ., n-k+l, take u. out of . . . , Up-ktI ’ d d  compute 
1 Y* 
-1 v =I xn-xo) T A (xn-x0)j Z (xn-~o)  

J 
t 

(b) Compute 1 det (V . . . , Vi-l, Vi+l,.. . , Vn-l, VJ) I = Di, i =1, ..., n-k+l. 
1, 

( c )  If no D, is larger than the value ldet (v . . . V,) I o, then no 

Otherwise go 

1 1’ 

replacement for the search direction occurs. 

(d) For D = Max (D.) and D m 1 m > I det (V,, . . . , Vn) Io, renumber 

= U  u = u  . .  . , u  = u  and 
u1 =uls * , u  m-1 m-1’ m mt3’ n-1 n’ 

u = I  - x  n n 0.  

is permitted th 
n-ktl Thus, at the K iteration, only one of 5, . . . , u 

to be discarded. 

4) The linear search in PRAXIS is similar to Powell B procedure, 

It reduces the number of function evaluations considerably. For example, 



consider ?he linear search in +he direction u, i. e., minimize 

1) (X) = f (x + X u  ), ( 6 . 8 )  
0 

At tho first iteration three function Pvaluations are Feeded for a 

quadratic cum& - fit, say p (A) = a 1 2 
t b X t c. The seond der- 

ivativeof P (I), i. e., a, is saved because it can he used m the nest 

iteration wher, +his search direction is utilized again. *' Then, the 

approximation for the second derivative of p (k) is always available 

if a linear search in the direction u has dready been performed or 

if u resulted from a singular value decomposition, which is +he step 

to fiid the principal ax is  vectors in PRAXIS. Thus, only two additional 

function values a re  needed for the three constants a ,  b, c, where a = " (0 )  

after {he first iteration. 

6 . 4  Exampies 

Zermelo' s pmblem ir, used to demonstrate the efficiency and 

reliability af the algorithm. Long' s method l7 is used to t i r a r f o m  

this variable time problem into a fixed fiial time problem. The equation6 

of motion a re  

x = v cos e 

y = v s i n e  

e =u, I u I  5 0 .5  

and the performance index is 

(6.9) 

Performing Long' 8 transformation, i.. e. ,  t = as, S I  [ O,1]  , 



x' = a Vcos 8 

y' = a  Vnin  9 

Q' =au 

a' = @  

and 

(A. It)  

To employ PRAXIS, the control u(s) must be discretired. Let u (13) = 

3. ~e [ 0 . t ~ ~ ) ;  u ( s ) = u ~ ,  s a [  0 8 1;. . . ;  U(IB)=U 8 4 1  s ~ - ~ ,  13, 1' 2 n' 

and consider the cos+ J to be minimized as a function of the 3 t 1 

variables a, u . . u i . e . ,  
1' n' 

J = Z T  a, g, uz' - 9 ",I (6.13) 

The problem was then attacked with PRAXIS €or three different inktial 

cntindtcr for a, ;, e., + (n'. The results are summarized in Table 6.1. f 



Table 6.1. Parameters and Results with PRAXCS. 

I 

c. = 0. O for s t f 0 ,  ?,I] 
1 

a* x(1) y(1) Figure ( 0 )  ~ + ( 0 )  - 
-f final CASE a 

r 

1 1 6.734 .&71 3.9? 5.801 6.4.a 

2 4 6.730 ' 6.71 3.999 4.9996.4.  

3 10 5.7408 6.71 3.990 I 
1 and 3 are shoum in Figure 6 . 5 ,  while the various control profiles 

are shown in Figure 6.4. In addition, the cost for tf(O) = 4 a i o  

shown in Figure 6.5.  

no longer improved the cost. Note that the trials with t f (O)=  1 and 

t:') = 10 copverged to the neighborhood of the minimum cost rapidly. 

However, the control profiles, in a sense, oscillate about the optimal 

control. 

more representative parameterized conrro &. 

This trial converged to a local minimum and 

Of course, this behavior could be improved by assuming a 

b 

4.9996.4.c I 



(a) = I stc. 

u I  
. 5  

(b) tt(O)= 4 scc. 

control 

soh tion 

Figure 5.4.  Control profiles using PRAXIS with various 

f'  
initial eetimates of t 
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7 .  I S*sirnrnarL 

Computer pr0grL-s t i  r shuttle trajectory optimization have been 

developed and delivered to NASA-JSC. 

the function-space gradient ~ conjugate-gradient, Davidsn, and Broyoen 

algorithms for the ascent prob!un. The P?AXIS parameter optimization 

scheme has been integrated into the I%SA-.J3C PEACE parameter 

0ptimi;atian program. 

Cne of the prozrwns contains 

7 . 2  Conclusions and Recommelrdations 

1. ) The function-space Broyden and Davidon methods per forned  

appreciably better on the shuttle ascent problem than the gradient and 

conjrrgate -gradient algorithms, with Broyden slightly better than 

Davidor. 

included in the Zormulation with the control constraints handled directly 

while the stare variable constra'ats were included with penalty functions. 

2. ) The storage problems associated with function-space Da. 'ion- 

Both control and state variable inequalky cop?traints were 

type techniques have br 7 overcome. Although considerable storage 

is necessary for the copputation of inner products, t t e  storage need 

not be in fast memory. 

storage problem i s  handled very easily by a d i sk  file storage system. 

The programs for upe on the NASA-JSC computer require modifications 

for drum storage. 

On the University oi Michigan computer the 

107 
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3. ) The University of Michigan computer is a time-sharing system 

with an interactive -graphics capability. 

considerably the time required to converge a large -scale optim:karion 

prohlem. For e x - a p l e ,  standard operation with +he NASA-JSC PEACE 

parameter optimization program (when a large number of parameters 

i8 involved) usually involves: making a single computer run daily, 

analysis of the result, adjustment of parameters (usually penalty 

cOcffi=ients), and resubmission of the program. 

analyst must stop-and-start on the same problem many times, and the 

process is a somewhat in-Xicient use of the analyst's time. 

tbt-shared, interactive graphics capability, the analyst can stay with 

the problem continuously for longer periods of time with the result 

being: less tctal computer time, less total hwma effort, more physical 

knowledge of the problem, and moie rapid solution of the problem. 

Thus, it is recommended that MPAD consider the u s e  of interactive- 

graphics terminals in the solution of iarge -scale trajectory optimization 

and mission analysis problems. 

This capability accelerates 

This means that the 

With a 

4. ) Previous investigators ha;re noted difficulties in soluiag 

variable final-time trajectory optimization problems with accelerated- 

gradient methods. 

indicate that the initial estimate of t is critical, and t f ('1 .c: t P *improves 

the convergence rate considerably. 

In Chapter 5 heuristic ar:**Tents and sin&ulations 

f 



5. Due t-o budget limitations, the PRAXIS algorithm could 

sot be simulated on realistic shuttle trajectory optimization probler-is. 

The worth of this algorithm will be determined by NASA- JSC personnel. 
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Appendix A 

Dynamical Equations of Motion: First  Stage 

As is customary in trajectory optimization the vehicle is modeled 

as a point mass. It is furthe r assunied that the thrust, aerodynamic, 

and gravitational forces act through the center of mass. By Newton' s 

Second Lak. 
.. - C F = r n r ,  

I. - 
where r is measured in an inertial coordinate system. Since numerical 

integration is desired in the first stage, consider Figure A. 1. The 
- 

acceleration of r is: 
Z 

I 

h e  rtial 
Rotating System 
- 
0 

Y 

x 

Figure A. 1. Rotating Coordinate System Definitions 

Consider ~ W G  coordinate systems fixed at  the center of the earth, 

one of which rotates with the earth and the other inertial. Then, 

i) 

ii) 3 = constant + b, = 0, since rototation of earth about its axis 

E = 0 ,  since both coordinate systems are  fixed at  the same point. 

is constant. 

- 
iii) r = p ;  follows from r = E t and i) E = 0. 
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center of the eartb shown 

/ 
X 

R kA 
F 2 - Y  

r 

X 

Figure A. 2. First-Stage Cwrdinate 5ysteni. 

- 
Since S2 is along the z-zxis , 



6 
e 

= 2 R COS e - z asin e 

r e  
ROT I 2 E x T  

- - - 
t T 6  ee + T  e 

Tr'r 4 +  yet T = Thrust Force = 

- 
A =Aerodynamic Force = A e t A e t r r  6 6 %'+ 

- -m k 

r 

- 
e 

2 r G - C-auitational Force = 

Then, upon s;lbstitution into Eq. (A.l)  

- 2  ' 2  .. 
r - r e  - r+ sin2 

1 k 
m r r 2 r 
-- - [ T t A - m - ]  

' 2  r i i  + 2  i - r +  sine cos 6 

- rd sin e cos e -2r   in 6 cos e 
1 
m =- [ To + A 6  ] 

- . .  . .  
r + S i n e t ; , r + S i n 0 t ~ r e  + c o s 8  

+ 2 r n C t  cos e t 2  m i n e  
1 =- m [ T+ + A + ]  

Define: 
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6 
cos 6 ] e 

(A. 5 )  

r = v  
r 

r Sin 6 



. 
m = mass flow rate 
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(A. 7 )  

F = A  + T  
r T r 

0 
F e = A o  + T 

A t T  %= + 4 
Since is an ignorable coordinate, the - equation is neglected. Then, 

with the following state-control definitions 

= e , x3 = u x4 = ve, x5 = v+, x6 =m,  u = 1m.I 
0' =2 r ' x , = r - R  

the equations of motion are: 

(r) & = x  
1 3  

4 
X 

( e )  2 -- 

(u) it = 

2 7q + Ro) 

3 ( y R o )  (3+Ro) 

2 
x 2 t x  t(xltRJQ 2 S i n L x  

2 2 
4 5 

F 

b 

4 
X 

"6 

Fe 

x3 x5 x4 x5 

t 2 Q X  c o s x  t- 
6 5 2 x  

2 tan - 2 nx, cos x (w) 2, = -(X1+Ro) - { r 2  

F+ - 2 x  nsinx  +-  
x6 

3 

(mass) i - 6 - - '  
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where 3 = altitude above earth 

x = e  2 

3 r  r 
- 

x = v -velocity in e direction 

- 
x = v - velocity in e direction 

- velocity in e+ direction 

4 0  e - 
x5 = v+ 

= Inass of othirle =6 

u = [mi - mass flow rate 

R = radius of earth 
0 

R - a n g a r  vela-ity of earth 

k = gravitational constant of earth 



Appendix B 

Atmosphere - .- and C, Modeis 

The 1963 Patrick Atmosphere model was used. Pressure and dsnsity 

ratios, and speed of sound data were obtained from Ref. 26 and cnrve 

fitted as functions of altitude accordbig to the equations 

13 
p/psL=exp ( a o + y x t . .  . . t o  13 x ) 

P ~ ~ = ~ e x p ( b o t b l x t .  . . .  tb13x  13 ) 

a = u p ( c  t c x t .  . .  . t c  323)  0 1  13 

altitude (ft) - 200,000 
100,000 x =  

The coefkientr ai, bi, ci are given in Ref. 27 

The data in Table B . l  were uaed to define the dzag model. The drag 

force is given by 

For Mach number6 between thorc in the data table, interpolation by 

M.c-0 cubic rplinaa wai  used. 
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l l8  

MachNo. (?A) 

P 

0.2 
0.4 
0.5 
0.6 
0.8 
1.0 
1.1 
1.2 
i. 5 
1.75 
2.0 
2.4 
3.0 
3.5 
4.0 
5. G 
6.0 
7.0 
2.0 
9.0 
3.0 

=D 

.028 

.028 

.028 
,029 
.032 
.058 
. no 
-121 
- 1 2 3  

1 .121 
.u5 
.106 

.066 

.055 

.047 

. c39 
-031 
. 0 2 5  
.021 
.019 
-014 

.08a 

Table B.l Drag Coefficient 



Appendix C 

Transformation Equations 

At the end of first-stage burn we wish to determine both the 

inclination of the orbital plane and the initial conditions for the second- 

stage, non-rotating polar coordinate system. The plane of the orbit is 

determined at first-stage burnout because there is no out-of-plane 

thrusting in the second-stage. Consider the conditions at fir st-sea 

burnout : 

& * h r  N Ccrnsider the new polar system ( r, 0, vr, vB ) : - 1 #+-cFr 
5% ar 

1 

Figme C. 1. Second-Stage Polar Coordinate System. 

since I 
the veI~:=r~y are the same in each system, the velocity transformation is 

= , [m ( v+ t r Q Sin 6 ;2 and the radial components of 

r 

F a  
V 0 

Thus, in 

r 

a b t e  notation 

c x = x  2 3  

( C .  3) 



r y -  where %= F-R ,x =u 0 2 r l 3  0 

amou t of s t rac tur e di s car dad. 

To obtain the inclination, consider the following unit vet- 

x" = . Note that tho mass will change by ihe 

r which 

- 
N e 

.e c 

/- 
e#* 

.@* 
0- 

b* 

is perpendicular to the p l p e  of the orbit: 
9 e - - -  r= 0 

- 
0 

0. 
h A i  

e - R T ~ =  inclination angle 

0- 

0. 

N = r x V =  r 0 0 I 

Let k unit vector along the axis o€ rotation of the earth. Then, 

- -  
The relation between tN, k , and the inclination, as is  show in Figure c-  2- 



I)rn;ta the transformatian equaticns (C. 3 )  by 

(C- 5) - s = tT IX). 

The partial der;-.-stives of g with respect to the x. are d e h e d  by 
1 

t-b i )  x , = %  =-yt 
I 

h 

ii! x2 = gz = x3 

Thus 

-1 
- -  - 

2 )(x, tR ) COS x 1 2 2 (  0 

ag3 1 - i  -ax-, 
LA 
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@33 1 - =-[ 
OX4 

2 

e 3  1 - = -[ 
8x5 

2 

1 
I - F  &4 



Appendix D 

- User’s Guide for PRAXIS 

PRAXIS determines the local minimum of a scalar function 

which need not be differenciablp. Double precision is necessary for 

al l  floating point variables. An EXTERNAL statement for +he function 

to 

However, the gradiest of the function is not required. 

Usage of PRAXIS 

be minimized is needed in fh program which calls PRAXIS. 

C A L L  PRAXIS (TO, €30, N, IPRIN, X, F, FMIN) 

Description of parameters: 

F: Function to be minimixed 

MACHUP: A machice precision parameter furnished in the 

program; it is about 2.22 x on the IBM 360. 

A tolerence €or the stopping criterion; the program 

stops searching for the minimum if 

TO: 

MACHUP I I xitll 1 + TO 

To a6surc fast convergence, 

i i + l  II x -x 115 

Maxi.~num step-size. 

HO should be about the maxim*wn distance from :.he 

HO: 

initial guess to the minimum. 

The number of dependent variables, i. e. , the dimension of 

x :N should not be less than b o ) .  

An integer for controlling the printing of numerical 

N: 

IPRIN: 

resd ts .  

12 3 



iPRii = 0 .  

IPRIK = 1. 

Nothing i s  piintcd by PRAXJS. 

Value of F i s  printed after every S ?- 1 or S 

linear minimizations. Final x i+  print-r!. If 

X i -I, ir:ermediate x i s  printed also 

‘The scale factors and the principal values of the 

approximating cpadratic form a r e  also printed. 

The vdnes of x meter every few linear minimit z t- ions 

are  prin+ecl also. 

All avaiiahle and relevent vaTues are printed. 

2 

- 
IPWK = 2. 

JPRXN = 3 .  

I P R W  - 4. 

: An nT dimensional vector. Initial guess of minimum 

Final estimate 

v a 

is placed here to start the program. 

@f X is retrirned to here .  
c 

F(X.N! : A REAL 8 fiinction to minimized. A declared 

EXTERNAL is necessazy in the calling program. 

FMm : The final. ~ l u r r  of F obtained. 

Output v-2 riables . 

LIMN: Number of linear mivimizations. 

E VALS: 

MIK F: Function value at LMIN th linear nnGhization 

Number of function evaluaticzs - 

Example of use  

RbfPLICI?’ LEAL ::’ 8 (A-H, - Z )  

DIMENSION X ( 2 )  

EXTERNAL BANANA 

ro = 1. D-5 
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1 

C. 

C .  

x = 2  

X(1) 71.2 DO 

X (2 j  = l . D O  

HO = 2 . 0  

IPRIN = I  

CALL PRAXIS (TO,HO,N, IPRIN, X, BANANA. F f m )  

PIUNT FMIN 

FORMAX ( ' FXIN =' . D 25.15) 

END 

. Etucticn to be minimized - . . - . . . . - . - . . . . - . . 

WAL FUNCTION BANANA (XIN) 

WPLICIT REAL * 8 (A-H, + -1.) 

DIMENSION X (N) 
Z W  .rt 

-ANA = 100. DO * (X (2) - X (1) *+ 2) 2 t (1.99- X(1: ) ** 2 

. .NOTE. 'THERE ARE NO DERIVA'fIVES OF BANANA . . - . . . 

RETURN 

END 



e1 - e 8  P= X ,  , x, : n-vector 
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Y.s (STOP ) 

Figure D.1. Flow Diagram of PRAXIS. 


